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Deep learning techniques have led to major scientific breakthroughs in the
past few years, from solving the protein folding problem [Jumper et al., 2021]
to better predicting extreme weather events [Price et al., 2025] and discov-
ering millions of new materials [Merchant et al., 2023]. Many scientific chal-
lenges remain to be overcome, but these successes show the potential of care-
fully crafted deep learning approaches to solve scientific problems. Hence,
my research lies at the intersection of deep learning and physics simulation,
with the goal of combining data-driven approaches and physical science to
solve complex scientific problems. Applications in which I am interested
include numerical simulations, meteorological forecasts, material discovery,
and astrophysics.

Contributing to future success implies developing deep learning methods
that have high capacity - for meaningfully processing very large amounts of
unstructured data - and provide coherent predictions that follow governing
physical laws and ensure interpretability. My research aims to leap towards
these objectives by focusing on:

1. Encoding physical priors in deep learning models: When mod-
eling phenomena from environments subject to known physical gov-
erning laws, we can provide these physical priors to the models in nu-
merous ways. For instance, physics-informed neural networks (PINNs)
[Raissi et al., 2019] solve partial differential equations (PDEs) by eval-
uating the residuals of these PDEs in their loss functions. I will use
this method to achieve physical coherence and higher performance for
forecasting and inverse problems [Hammoud et al., 2022] (e.g., numer-
ical weather prediction and climate downscaling).

2. Exploring generative models for physics: Generative models
offer a powerful framework for capturing the inherent variability of
complex physical systems while enabling quantification of uncertainty
in predictions. However, a persistent challenge lies in assessing the
meaningfulness of the variability learned by these models across var-
ious scientific applications. My research aims to address this issue
by leveraging advanced generative deep learning techniques, such as
diffusion models and flow matching, to tackle complex scientific prob-
lems. Furthermore, I seek to integrate the Physics-Informed Neural
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Networks (PINN) framework — originally developed for deterministic
modeling — into generative modeling approaches [Bastek et al., 2024].
This hybrid methodology aims to combine the strengths of PINNs with
generative models, fostering more robust and interpretable solutions
for challenging scientific domains.
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